Limit Theorems for Dispersing Billiards with Cusps

نویسنده

  • P. BÁLINT
چکیده

Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting “intermittent” behavior that alternates between regular and chaotic patterns. Their statistical properties are therefore weak and delicate. They are characterized by a slow (power-law) decay of correlations, and as a result the classical central limit theorem fails. We prove that a non-classical central limit theorem holds, with a scaling factor of √ n logn replacing the standard √ n. We also derive the respective Weak Invariance Principle, and we identify the class of observables for which the classical CLT still holds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dispersing billiards with cusps: slow decay of correlations

Dispersing billiards introduced by Sinai are uniformly hyperbolic and have strong statistical properties (exponential decay of correlations and various limit theorems). However, if the billiard table has cusps (corner points with zero interior angles), then its hyperbolicity is nonuniform and statistical properties deteriorate. Until now only heuristic and experiments results existed predicting...

متن کامل

Convergence of Moments for Dispersing Billiards with Cusps

Dispersing billiards with cusps are deterministic dynamical systems with a mild degree of chaos, exhibiting “intermittent” behavior that alternates between regular and chaotic patterns. They are characterized by decay of correlations of order 1/n and a central limit theorem with a non-classical scaling factor of √ n logn. As for the growth of the pth moments of the appropriately normalized Birk...

متن کامل

Decay of correlations and invariance principles for dispersing billiards with cusps, and related planar billiard flows

Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster ...

متن کامل

0 M ay 2 00 8 Decay of correlations and invariance principles for dispersing billiards with cusps , and related planar billiard flows

Following recent work of Chernov, Markarian, and Zhang, it is known that the billiard map for dispersing billiards with zero angle cusps has slow decay of correlations with rate 1/n. Since the collisions inside a cusp occur in quick succession, it is reasonable to expect a much faster decay rate in continuous time. In this paper we prove that the flow is rapid mixing: correlations decay faster ...

متن کامل

Scaling Rate for Semi-dispersing Billiards with Non-compact Cusps

We show that certain billiard tables with non-compact cusps are mixing with respect to the invariant infinite measure, in the sense of Krengel and Sucheston. Moreover, we show that the scaling rate is slower than a certain polynomial rate.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010